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Starting from stationary bifurcations in Couette–Dean flow, we compute stationary
nontrivial solutions in the circular Couette geometry for an inertialess finitely exten-
sible nonlinear elastic (FENE-P) dumbbell fluid. These solutions are isolated from
the Couette flow branch arising at finite amplitude in saddle–node bifurcations as
the Weissenberg number increases. Spatially, they are strongly localized axisymmetric
vortex pairs embedded in an arbitrarily long ‘far field’ of pure Couette flow, and are
thus qualitatively, and to some extent quantitatively, similar to the ‘diwhirl’ (Groisman
& Steinberg 1997) and ‘flame’ patterns (Baumert & Muller 1999) observed exper-
imentally. For computationally accessible parameter values, these solutions appear
only above the linear instability limit of the Couette base flow, in contrast to the
experimental observations. Correspondingly, they are themselves linearly unstable.
Nevertheless, extrapolation of the trend in the bifurcation points with increasing
polymer extensibility suggests that for sufficiently high extensibility the diwhirls will
come into existence before the linear instability, as seen experimentally.

Based on the computed stress and velocity fields, we propose a fully nonlinear self-
sustaining mechanism for these flows. The mechanism is related to that for viscoelastic
Dean flow vortices and arises from a finite-amplitude perturbation giving rise to a
locally unstable profile of the azimuthal normal stress near the outer cylinder at
the symmetry plane of the vortex pair. The unstable stress profile, in combination
with a ‘tubeless siphon’ effect, nonlinearly sustains the patterns. We propose that
these solitary, strongly nonlinear structures comprise fundamental building blocks for
complex spatiotemporal dynamics in the flow of elastic liquids.

1. Introduction
Spatially localized structures are common in pattern-forming physical systems

(Cross & Hohenberg 1993). Such patterns are interesting and important because they
are an indication of significant nonlinear effects, and their interaction with other
patterns may give information on spatiotemporal behaviour. Examples of oscilla-
tory localized structures can be found in binary liquid mixtures (Moses, Fineberg
& Steinberg 1987; Heinrichs, Ahlers & Cannell 1987; Kolodner, Bensimon & Surko
1988), parametrically excited surface waves (Wu, Keolian & Rudnick 1984), elas-
tic media (Wu et al. 1987), granular media (Umbanhowar, Melo & Swinney 1996;
Lioubashevski, Arbell & Fineberg 1996; Fineberg & Lioubashevski 1998), and col-
loidal suspensions (Lioubashevski et al. 1999). Recently, stationary, two-dimensional
finite-amplitude localized states have been computed in Newtonian plane Couette
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flow (Cherhabili & Ehrenstein 1995, 1997). These solutions are isolated from the
base Couette flow branch and were computed by numerical continuation of travelling
wave solutions in plane Poiseuille flow. Although unstable, these may be related to
coherent structures observed in turbulent plane Couette flow.

In flows of viscoelastic liquids, long-wavelength structures were first observed by
Beavers & Joseph (1974) in a circular Couette device. These structures, termed
‘tall Taylor cells’, are primarily inertia-driven patterns (Taylor vortices) modified
by elasticity. Similar patterns have been computed by Lange & Eckhardt (2001)†.
Recently, long-wavelength, stationary, axisymmetric vortex pair structures have been
observed in inertialess viscoelastic circular Couette flow by Groisman & Steinberg
(1997, 1998) and Baumert & Muller (1999). There are three interesting aspects to these
observations: (i) isothermal linear stability analysis in this geometry never predicts
stationary bifurcations, (ii) these vortex pairs, dubbed ‘diwhirls’ by Groisman &
Steinberg (1997) and ‘flame patterns’ by Baumert & Muller (1999) are very localized,
i.e. there does not seem to be a selected axial wavelength for these patterns, and (iii)
the transition back to the base Couette flow is hysteretic, i.e. the shear rate at which
the Couette flow base state is recovered is much lower than the onset point at which
it loses stability. In the present study, we seek answers to the following questions,
motivated by these observations: (i) Do isolated branches of stationary solutions
exist in a simple model for a viscoelastic fluid? (ii) Are such solutions, if they exist,
localized in space? (iii) Can the results from the computations be used to postulate a
self-sustaining mechanism for these structures?

We address these questions by fully nonlinear computations of the branching
behaviour of an isothermal inertialess finitely extensible nonlinear elastic (FENE)
dumbbell fluid in the circular Couette geometry. Our computations show that an
isolated branch of stationary solutions does indeed exist in the circular Couette
geometry. In common with the experimentally observed diwhirls, these are long-
wavelength solutions that exhibit significant asymmetry between radial inflow and
outflow and show hysteresis in Weissenberg number. In addition, these solutions
persist at arbitrarily large wavelengths: some of the solutions we have computed have
an axial wavelength that is more than a hundred times larger than the gap width. We
also use the results from our computations to propose a self-sustaining mechanism for
these patterns. Along with the circular Couette flow base state, these structures may
form the building blocks for complex spatiotemporal dynamics in the flow of elastic
liquids, such as the recently observed phenomenon of elastic turbulence (Groisman &
Steinberg 2000). In addition, they may be linked to localized defects seen in polymer
processing operations and possibly to the strongly nonlinear and long-wave features
observed in free surface flows (Grillet, Lee & Shaqfeh 1999).

Elastic instabilities are common in flows with curved streamlines (Shaqfeh 1996;
McKinley, Pakdel & Öztekin 1996). A purely elastic (i.e. zero Reynolds num-
ber) instability in circular Couette flow was first observed by Larson, Shaqfeh &
Muller (1990), who also elucidated a mechanism for linear instability with respect
to time-dependent axisymmetric disturbances. Later computational work (Joo &
Shaqfeh 1994; Sureshkumar, Beris & Avgousti 1994) showed that time-dependent
non-axisymmetric modes were the most destabilizing, and Joo & Shaqfeh (1994) ex-

† Although these authors denote the solutions that they find as ‘diwhirls’, their investigation
is confined to regimes where Re � 1 and Weθ/Re � 1, where Re and Weθ are Reynolds and
Weissenberg numbers respectively. In these parameter regimes, fluid inertia plays a significant role.
Thus, the patterns they simulate cannot be classified as being driven by elasticity alone.
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panded the mechanism proposed by Larson et al. (1990) to include non-axisymmetric
modes. Generically, the mechanism for instability in elastic flows is the inward radial
force associated with tensile stresses along curved streamlines. Another instability in-
volving non-isothermal effects has been found recently (Al-Mubayedh, Sureshkumar
& Khomami 1999); this results in a stationary axisymmetric bifurcation but at shear
rates an order of magnitude smaller than where the diwhirls are observed. Therefore,
this mechanism appears to have limited relevance for the diwhirls, but seems to
explain the very weak stationary vortices seen experimentally by Baumert & Muller
(1995, 1997). Hereafter we consider isothermal flow.

The absence of a stationary bifurcation from the circular Couette flow base state
means that any branch of stationary solutions that exists in this flow geometry must
be isolated from the base state flow, i.e. there can be no direct path from the base
state flow to this branch of solutions. One way of accessing such an isolated branch
is to introduce an additional parameter that is zero in the limit of circular Couette
flow, but for some non-zero value of which there is a stationary bifurcation from
the base state. We can find clues to possible parameters that satisfy this criterion by
examining flows closely related to viscoelastic circular Couette flow, but where the
primary instability is stationary and axisymmetric. One such flow is viscoelastic Dean
flow, pressure-driven flow in a curved channel. Experimentally, an approximation to
Dean flow may be generated by placing a small obstruction spanning the gap between
the two cylinders in a concentric cylinder geometry and then rotating both cylinders
at the same angular velocity (Joo & Shaqfeh 1994).

The mechanism of instability in Dean flow, elucidated by Joo & Shaqfeh (1992), is
related to the unstable stratification of hoop stress away from the centreline of the
channel between the cylinders: this stratification is absent in circular Couette flow.
Polymer molecules are more highly stretched outward from the channel centreline.
This variation in elastic stresses leads fluid elements to be under radial compression
and ultimately to a buckling process leading to the formation of steady axisymmetric
vortices. Starting from Dean flow, circular Couette flow can be approached in a smooth
way by progressively decreasing the pressure drop, while simultaneously increasing
the rotation speed of one of the cylinders. The intermediate flow, where both an
azimuthal pressure drop and the cylinder rotation are present as driving forces,
is known as Couette–Dean flow. The linear stability characteristics of viscoelastic
Couette–Dean flow were studied by Joo & Shaqfeh (1992). As we might expect, this
flow is unstable to a stationary axisymmetric mode when the pressure gradient is
the dominant driving force, whereas a non-axisymmetric oscillatory mode is the most
dangerous when cylinder rotation dominates.

Work on nonlinear analysis in circular Couette and Dean flow has concentrated on
regimes close to the bifurcation point – there have been no extensive computational
studies of fully nonlinear behaviour in these flows. Renardy et al. (1996) conducted a
nonlinear analysis to study mode interactions arising from the introduction of inertia
into the system. Graham (1998) performed a weakly nonlinear analysis to determine
the criticality of the bifurcation in circular Couette flow in the narrow gap limit
upon addition of axial flow. Later, Ramanan, Kumar & Graham (1999) extended this
analysis to Dean flow. Khayat (1999) used a low-dimensional model in an attempt
to determine the dynamical behaviour in purely elastic and inertioelastic circular
Couette flow. It should be noted, however, that stress localization (a striking example
of which will be seen below) is common in viscoelastic flows, and it is questionable
whether such a simple low-dimensional model, which is essentially a low-resolution
Galerkin projection, can adequately capture such behaviour.
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Figure 1. Geometry of Couette–Dean flow in an annulus.

The strategy we adopt to search for isolated branches of stationary solutions in
circular Couette flow is a fully nonlinear analysis of the governing equations. We
use a numerical continuation procedure (Seydel 1994) to trace out stationary non-
trivial solutions bifurcating from the trivial branch in Dean or Couette–Dean flow
and see if these solutions persist as a parameter is varied smoothly to change the
flow from Dean or Couette–Dean to pure circular Couette flow. Any such stationary
solutions that persist in the limit of circular Couette flow have to be part of an
isolated branch since there is no stationary bifurcation from the base state circular
Couette flow. In the remainder of the paper, we report our procedure and results as
follows. Section 2 contains a discussion of the geometry, governing equations, and
scalings that are used in the computations. In § 3, we present a discussion of the
discretization scheme and the numerical method that we use to solve the sparse linear
systems arising in the Newton iterations during the continuation process. This section
includes discussion on a preconditioner that we have found to be especially useful. In
§ 4, we discuss the results of continuation in the various parameters, the mechanism
of the diwhirl solutions we compute, their stability with respect to axisymmetric and
non-axisymmetric oscillatory disturbances, and we present a quantitative comparison
of our computed diwhirls with experimental data (Groisman & Steinberg 1998). We
also present some results on nonlinear behaviour in Dean flow, where we find that
localized patterns do not exist. Finally, we conclude in § 5 with a summary of our
main findings.

2. Formulation
We consider the flow of an inertialess polymer solution between two concentric

cylinders (figure 1). The inner cylinder has radius R1 and the outer cylinder has radius
R2. The fluid has a relaxation time λ; the polymer and solvent contributions to the
viscosity are denoted respectively by ηp and ηs, with the ratio ηs/ηp denoted by S .
The solution viscosity ηt is given by the sum of the solvent and polymer viscosities,
ηs + ηp. The flow is created by a combination of the motion of the inner cylinder at a
velocity ΩR1 and by the application of an azimuthal pressure gradient Kθ = ∂p/∂θ.

The equations governing the flow are the dimensionless momentum and continuity
equations

∇ · τ − ∇p+WeθS∇2v = 0, (2.1)

∇ · v = 0, (2.2)

where v is the velocity, p is the pressure and τ is the polymer stress tensor. The
polymer molecules are modelled as dumbbells connected by finitely extensible springs.
Approximate constitutive equations for this model include the FENE-P equation (Bird
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et al. 1987b) and the FENE-CR equation (Chilcott & Rallison 1988), which are given
in dimensionless form as

Weθ

(
∂α

∂t
+ v · ∇α− {α · ∇v}T − {α · ∇v}

)
+

(
α

(1− tr(α)/b)
− I

(1− cr tr(α)/b)

)
=0,

(2.3)

where α is the ensemble average of the polymer conformation tensor, I is the identity
tensor,

√
b is a dimensionless measure of the maximum extensibility of the dumbbells,

Weθ is the Weissenberg number, which is the product of the polymer relaxation
time and a characteristic shear rate, and cr is a parameter which takes the value
1 for the FENE-CR model and 0 for the FENE-P model. Values of cr between
0 and 1 do not correspond to any standard constitutive equation; this parameter
merely serves as a convenient way of performing numerical continuation between the
FENE-P and FENE-CR equations. Both models are derived by applying approximate
closures to the equation governing the evolution of the ensemble average of the
conformation tensor of a dilute solution of non-interacting dumbbells connected by
nonlinear springs, and are used extensively in numerical calculations. The FENE-P
model predicts a shear-thinning viscosity and first normal stress coefficient, whereas
the FENE-CR model predicts a shear-thinning first normal stress coefficient but a
constant viscosity. Thus, the two models differ in their prediction of the balance
between shear and normal stresses. The FENE-P model has been found to better
approximate the behaviour of the ‘exact’ FENE model (Bird et al. 1987b) in steady
shear and elongational flows than the FENE-CR model (Herrchen & Öttinger 1997).
Given the differences between the two models, we would expect them to exhibit
different behaviour in complex flows, and our computations confirm this.

For both models, b and the components of α are scaled by kT/H , where k is
Boltzmann’s constant, T is the temperature, and H is the spring constant. Distance
is scaled by the gap width, and time by the inverse of a characteristic shear rate.
Since the FENE-P model does not yield an analytical solution for the base state
in Couette–Dean flow, we take the characteristic shear rate to be the shear rate at
the outer cylinder for an Oldroyd-B fluid (infinitely extensible springs, i.e. 1/b = 0)
flowing through the same geometry. The velocity scale is chosen to be the product of
the time scale and the gap width. The polymer stress, scaled by the shear modulus
ηp/λ, is obtained from α using the relation τ = α/(1 − tr(α)/b) − I/(1 − cr tr(α)/b).
Other parameters of importance are the dimensionless gap width ε = (R2 − R1)/R2,
and δ, which measures the relative importance of the pressure gradient as the driving
force for the flow, given by

δ =
−Kθε

2R2/(2ηt)

(1− ε)R2Ω −Kθε2R2/(2ηt)
, (2.4)

so that δ = 0 is circular Couette flow and δ = 1 is Dean flow. The velocity satisfies
no-slip boundary conditions on the walls of the cylinder.

3. Discretization and solution methods
Equations (2.1), (2.2) and (2.3) form a set of partial differential equations for the

three components of the velocity, the pressure, and the six components of α. We
look for steady, axisymmetric solutions that are periodic in the axial direction with a
dimensionless period (scaled by the gap width) of L, so each variable only depends
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on two spatial directions, the radial direction r (shifted and scaled so that r = 0 is the
inner cylinder and r = 1 the outer cylinder), and the axial direction z. In performing
the numerical discretization, we can take advantage of certain symmetry properties of
the solutions we seek. In particular, we take the radial and azimuthal velocities to be
reflection symmetric about the plane z = L/2, and the axial velocity to be reflection
anti-symmetric. This implies that αrr , αrθ , αθθ , αzz and p are reflection symmetric,
while αrz and αθz are reflection anti-symmetric. Thus, the computational domain is
Γ = {0 6 r 6 1, L/2 6 z 6 L}, which is half the size of the physical domain.

Considerable care needs to be exercised when choosing a discretization scheme.
Since we are looking for localized solutions, the primary consideration is to choose a
scheme which permits efficient local refinement. The spectral element scheme of Patera
(1984) satisfies this requirement while also preserving the exponential convergence
properties of a global spectral method as long as the solution components in each
element are well resolved. Our investigations showed that this method performs much
better than either a global Chebyshev/Fourier or Chebyshev/Chebyshev colloca-
tion scheme or a domain decomposition Chebyshev/Chebyshev collocation scheme.
Additionally, we found that the linear systems associated with the continuation
scheme presented below are also better conditioned for a spectral element scheme
than for a global spectral method. In the spectral element formulation, we apply
Galerkin weighting on the conservation and continuity equations, and streamline-
upwind/Petrov-Galerkin weighting (Brooks & Hughes 1982; Marchal & Crochet
1987) on the constitutive equations. The formulation, which is based on the weak
form of the governing equations, is given by∫

Γ

(−pI + τ +WeθS∇v) :∇u dΓ =

∫
∂Γ

u · (−pI + τ +WeθS∇v) · n ds, ∀ u ∈ U, (3.1)

∫
Γ

q∇ · v dΓ = 0, ∀ q ∈ Q, (3.2)

∫
Γ

(
Weθ

(
∂α

∂t
+ v · ∇α− {α · ∇v}T − {α · ∇v}

)
+

α

(1− tr(α)/b)
− I

(1− cr tr(α)/b)

)
: (w + cv · ∇w) dΓ = 0, ∀w ∈W, (3.3)

where U ∈ H1(Γ ), the space of functions whose first derivatives are square integrable
over Γ , W,Q ∈ L2(Γ ), the space of functions which are square integrable over Γ , and
c = h/V where h is a characteristic length scale of an element, V is a characteristic
velocity, and n is the unit normal vector pointing out of the domain. We take h to be
the square root of the area of the element, and V to be the average of the magnitude of
the velocity at the four corners of each element. Both the interpolating functions and
the weighting functions must be chosen to satisfy the symmetry conditions discussed
above.

In each element, the variables are approximated by tensor products of Lagrange
polynomials defined on the Gauss–Lobatto–Legendre (GLL) grid. We take the sym-
metry properties into account by treating the elements bordering the axial edges in a
different way than the interior elements. Since the GLL grid is defined in the domain
{−1 6 ξ 6 1}, we map each interior element to {−1 6 ξr 6 1,−1 6 ξz 6 1}. We map
the elements bordering the left-hand edge (z = L/2) to the range {−1 6 ξr 6 1, 0 6
ξz 6 1}, and use even axial interpolants for the reflection symmetric components and
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Figure 2. A spectral element mesh with 16 axial and 16 radial elements with fifth-order polynomials
in each direction in each domain. Note the dense concentration of points near r = 1 and z = L/2.
The high resolution is necessary to capture the intense stress localization in these regions.

odd interpolants for the reflection anti-symmetric components. Similarly, we map the
elements bordering the right-hand edge (z = L) to {−1 6 ξr 6 1,−1 6 ξz 6 0} and
use even or odd interpolants as appropriate. A sample spectral element mesh is shown
in figure 2.

In order to avoid spurious pressure modes, the relative approximation orders of
velocity and pressure need to satisfy the Ladyzheskaya, Babuska and Brezzi condition.
We ensure this by using interpolants for the pressure that are based on a grid that
has two fewer points in each direction than the velocity grid in each element. We
choose the approximation orders for the components of α to be the same as for
the velocity. We perform the integrations in equations (3.1) to (3.3) using Gauss–
Legendre quadrature on the GLL grid in each element and construct the final system
by direct stiffness summation. This procedure reduces the system of nonlinear partial
differential equations to a system of nonlinear algebraic equations for the nodal values
of the variables on the appropriate GLL grid in each element. These equations can
be written in compact form as

E
∂y

∂t
= f(y,Weθ, S , ε, b, L, δ). (3.4)

The matrix E has zeros in the rows corresponding to the momentum and continuity
equations. Steady states correspond to solving

f(y,Weθ, S , ε, b, L, δ) = 0. (3.5)

Solutions to equation (3.5) are tracked using a numerical continuation procedure,
the starting point for which is the base-state Oldroyd-B solution. This solution is
used as an initial guess for the FENE-P or FENE-CR base-state solution and refined
using a Newton iteration. We calculate subsequent points along the branch using
a pseudo-arclength continuation algorithm (Seydel 1994), which we briefly describe
here. Let us denote the set of the values of the variables at the collocation points
by the vector y, and the continuation parameter by µ. Here, µ could be Weθ, b, or
L. In pseudo-arclength continuation, we consider both y and µ to be functions of
an arclength parameter s. Thus, we can write the set of discretized equations in the
compact form

f(y(s), µ(s)) = 0. (3.6)

Given a point (y0, µ0) on the solution branch, the idea is to find the next point (y1, µ1)
such that, apart from satisfying the governing equations, it obeys an additional
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constraint

N(y, µ) = ẏ0 · (y − y0) + µ̇0(µ− µ0)− ∆s = 0, (3.7)

where (ẏ0, µ̇0) is the unit tangent at the point (y0, µ0), and ∆s is a specified step length.
At each step, we use a Newton iteration to solve the augmented set of equations

f(y(s), µ(s)) = 0, N(y(s), µ(s)) = 0. (3.8)

The Jacobian matrix of this system is given by

J =

(
fy fµ

ẏ0 µ̇0

)
(3.9)

and is not singular at a turning point.
While tracing a solution branch, we check for stationary bifurcations using a test

function method (Seydel 1994). The test function is a scalar function that changes sign
at a stationary bifurcation point, and is relatively inexpensive to compute. Suppose
that (f 0

y , µ
0) is a stationary bifurcation point. Then, it follows that

fy(y
0, µ0)h = 0, (3.10)

where h is the eigenvector corresponding to the zero eigenvalue of fy(y
0, µ0). Suppose

now that we are at a point (ȳ, µ̄) different from the bifurcation point. Then equation
(3.10) with (y0, µ0) replaced by (ȳ, µ̄) has no non-trivial solution for h. However, we
can get a solution to an equation that resembles this closely. We arbitrarily choose
two indices l and k, and require that hk = 1. We do this by replacing the lth row in
equation (3.10) by the equation eTk h = 1, where ek is the column vector with a 1 in
the kth position and zeros elsewhere. After this substitution, equation (3.10) becomes

Jlkh = el , (3.11)

where Jlk is the matrix obtained after performing the indicated substitutions in fy . If
we are exactly at the bifurcation point, then h is simply the eigenvector corresponding
to the zero eigenvalue, normalized so that its kth component is 1. If equation (3.11) is
solved close to a bifurcation point, then h is a good approximation to the eigenvector
corresponding to the zero eigenvalue. In particular, the scalar function

tlk = eTl fy(y, µ)h (3.12)

is zero at a bifurcation point, and changes sign as a bifurcation point is crossed. We
use tlk with l = k to check for stationary bifurcations.

If a stationary bifurcation is detected, as for example when the trivial branch in
Dean flow becomes unstable, we need to begin tracking the new branch. To compute
a first approximation to a point on the new branch, we use the fact that h closely
approximates the eigenvector corresponding to the zero eigenvalue, and write

z̄ = ȳ + δ0h, (3.13)

for some small value of δ0, as an approximation to a point on the new branch.
However, if we perform a Newton iteration starting with z̄ as the initial guess, we are
likely to converge back to the old branch. Instead, we perform a Newton iteration on
the augmented system of equations(

f(z, µ)
zk − z̄

)
= 0 (3.14)
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to solve for a point (z∗, µ∗) on the new branch. In equation (3.14), we are simply
specifying the value of a solution component on the new branch and solving for
the point (z∗, µ∗) where this holds. The method is especially effective when switching
from the base solution to the non-trivial branch because we can choose k to be a
component of vr or vz , both of which are zero in the base state.

The test function approach allows us to determine the existence of stationary
bifurcations. To determine stability with respect to oscillatory disturbances, we need
to find the eigenvalues ω of the generalized eigenvalue problem

fy q = ωEq. (3.15)

If any of the eigenvalues have positive real parts, the solution is unstable with
respect to disturbances that have the same symmetry properties that y has and have
wavelengths L∗ such that L/L∗ is an integer; otherwise it is stable with respect to
such disturbances. We do not attempt the much more demanding task of determining
stability with respect to disturbances of arbitrary wavelength. Since we are only
interested in determining stability, we do not need to find the entire spectrum of
eigenvalues. It is only necessary to check if any of the ω have positive real parts. To do
this, we use an Arnoldi scheme, as implemented in the public domain software package
arpack (Lehoucq, Sorensen & Yang 1997), to calculate a few such eigenvalues. Since
arpack does not have a built-in option to calculate a specified number of eigenvalues
with positive real parts, we use a spectral transformation suggested by Christodoulou
& Scriven (1988). Using this transformation, we find the eigenvalues κ of the matrix
P = (E − fy)−1(E + fy). These eigenvalues are related to the the eigenvalues ω in
equation (3.15) by means of the transformation

κi =
1 + ωi

1− ωi . (3.16)

The eigenvectors of P are identical to those of equation (3.15). This transformation
maps the eigenvalues in the left-half of the complex plane to the interior of the unit
circle. Thus, the eigenvalues of equation (3.15) with positive real parts map on to
the eigenvalues of P with the largest magnitude, and are easily found by arpack.
We should mention here that the Arnoldi scheme constructs a Krylov subspace by
the successive action of P on a vector. As is evident from the definition of P , the
construction of each such vector requires the solution of a linear system. Thus, the
eigenvalue computation is an expensive process, and we only perform it for a few
points.

The process for determining stability with respect to non-axisymmetric modes is
somewhat more complicated. We write the solution vector φ as

φ(r, z, θ) = φ̄(r, z) + ε̂φ̃(r, z) exp (ωt+ inθ), (3.17)

where ε̂φ̃ is a small perturbation, ω is the growth rate, and n is the azimuthal
wavenumber of the perturbation, which is an integer. Substituting this in the governing
equations, and retaining terms at O(ε̂) gives a complex generalized problem for the
growth rate ω:

Jφ̃ = ω E φ̃. (3.18)

As in the axisymmetric case, we can reduce this to a regular eigenvalue problem using
the spectral transformation K = (E − J)−1(E + J).

At this point, it is clear that every step of the procedure involves the solution of a
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system of linear equations. Let us denote the generic equation we solve as

Ax = b. (3.19)

It is well worth expending effort to make the solution process efficient. First, A is a
sparse matrix, so considerable savings in memory result from just storing the non-
zero entries together with integer pointer arrays that store information about the
coordinates of each stored entry. The sparse nature of A also means that a properly
implemented iterative method could be more efficient at solving equation (3.19) than
a direct scheme. The iterative scheme we use is GMRES (Saad & Schultz 1986).
However, GMRES will converge only if A is well conditioned, and this is generally
far from being true for the systems we solve. Therefore, we solve a preconditioned
system

M A x = Mb, (3.20)

where M is an approximation to A−1. The preconditioner that we use is a modified
version of incomplete LU decomposition with dual threshold (ILUT) to control fill
in (Saad 1996). To build this preconditioner, we construct an auxiliary matrix Ã by
setting to zero in A the entries corresponding to the velocities and pressure in the
rows corresponding to the constitutive equation, and the entries corresponding to
the components of α in the rows corresponding to the momentum and continuity
equations. We then construct an ILUT decomposition of Ã and apply this as a
preconditioner for A, denoting this method ILUT∗. We find that this is a very
effective technique, and the largest linear systems that we have solved (O(60 000)
unknowns) converge to a relative accuracy of 10−6 in about 350 GMRES iterations,
with the preconditioner having about three times the number of non-zero entries that
A does. Smaller systems converge faster and fewer non-zero entries can be kept in
the preconditioner.

In using ILUT∗ to solve the complex generalized eigenvalue problem indicated by
equation (3.18), we need to modify the problem so that it only involves real numbers.
Recall that the spectral transformation requires the solution of the linear system

(E − J) x = b (3.21)

for each iteration of arpack. Instead, we rewrite equation (3.18) as a real-valued
problem

ω

(
E 0

0 E

) (
φ̃r

φ̃i

)
=

(
Jr Ji

Ji Jr

) (
φ̃r

φ̃i

)
, (3.22)

where the subscripts r and i denote respectively the real and imaginary parts of the
vector or matrix. Note that the matrix E is purely real and hence does not have a
subscript. The spectral transformation now requires the solution of linear systems
involving the matrix

S =

(
(E − J)r −Ji
Ji (E − J)r

)
,

which is real. To precondition this matrix, we note that the matrix Ji has far fewer
entries than (E−J)r . Therefore, as a first approximation, we can neglect it in computing
the preconditioner. We construct the preconditioner by performing ILUT∗ on (E−J)r .
If M∗ represents this decomposition, we precondition S using the matrix(

M∗−1 0
0 M∗−1

)
.
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Figure 3. Linear stability curves at δ = 1 (Dean flow) computed using the FENE-P model. The
points marked TB are Takens–Bogdanov points. The lines correspond to points where the base-state
flow loses stability to stationary axisymmetric perturbations.
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Figure 4. Linear stability curves at δ = 1 (Dean flow) computed using the FENE-CR model. As in
figure 3, only stationary axisymmetric perturbations are considered. Note the complete absence of
non-stationary bifurcations.

4. Results and discussion
4.1. Stationary bifurcations from the Dean and Couette–Dean flows

Rather than explore large volumes of parameter space, we restrict our attention
to values close those used in the experiments by Groisman & Steinberg (1997).
Specifically, we fix the value of S at 1.2, and except when we examine the effect of
varying the gap width, set ε = 0.2. These values are close to the ones used in the
experiments by Groisman & Steinberg (1997). For most of our work, we use the
FENE-P model. The reasons for this choice will become clear later in this section.
For now, we simply note that the polyacrylamide solutions used in the experiments
showed shear thinning in both the viscosity and the first normal stress coefficient
(Groisman & Steinberg 1998), which indicates that the FENE-P constitutive equation
may be a better model for these solutions than the FENE-CR equation.

In order to track stationary non-trivial branches, it is first necessary to find from
where they bifurcate. Therefore, the logical starting point of our investigation is the
linear stability diagram for Dean flow. Figure 3 shows such a diagram computed using
the FENE-P model. Takens–Bogdanov points, where the bifurcation switches from
a stationary mode to an oscillatory mode, are marked TB. Unlike in the Oldroyd-B
model, where one such point is seen only at very small wavelengths (Ramanan et al.
1999), as the polymer becomes stiffer (i.e. b decreases), these points are shifted to larger
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Figure 5. Continuation in Weθ of a stationary solution in Dean flow. The parameter values are
L = 1.05, b = 700, ε = 0.20, and S = 1.2. At the Hopf point, a pair of complex conjugate
eigenvalues becomes unstable. These collide and form two real eigenvalues, one of which recrosses
the imaginary axis at Weθ = 29.57, where the stationary branch originates. The solution amplitude
used here differs from that used in subsequent figures and is defined in equation (4.1).

wavelengths. For a sufficiently small value of b, there is no stationary bifurcation from
the base state at all. From the point of view of numerical simulation, we would prefer
to work with as small a value of b as possible, expecting stress boundary layers to
be less sharp for smaller values of b, which in turn makes the computations easier.
However, decreasing b tends to lower the elastic character of the fluid and suppresses
elastic instabilities. Before moving on to the non-trivial solutions, we present some
linear stability results for Dean flow of the FENE-CR model in figure 4. Note that,
unlike in the FENE-P model, stationary bifurcations are seen even at low values of
b. Thus, the FENE-CR model predicts linear stability behaviour that is qualitatively
different from that predicted by the FENE-P model. We will have more to say on the
differences between the two models in § 4.3.

4.2. The branch structure of viscoelastic Couette–Dean flows

We begin the nonlinear analysis by tracking the bifurcating branch of stationary
solutions in Dean flow at b = 700 and L = 1.05. Since this value of b is relatively
small, numerical continuation is not difficult and a crude numerical scheme suffices.
We performed these calculations using a global Chebyshev collocation scheme in both
the radial and axial directions. At L = 1.05, a pair of complex conjugate eigenvalues
crosses the imaginary axis at Weθ = 28.73. Upon further increasing Weθ, the two
unstable eigenvalues coalesce and form a pair of unstable real eigenvalues which
then move in opposite directions. The smaller one of these recrosses the imaginary
axis at Weθ = 29.57. We track in Weθ the stationary branch bifurcating as result of
this crossing. The result is shown in figure 5, where we plot the solution amplitude,
measured by the quantity

‖ vr ‖=
(

Nr∑
i=0

Nz∑
j=0

|vr,ij |2
)1/2

, (4.1)

as a function of Weθ, where Nr + 1 and Nz + 1 are the number of Chebyshev
collocation points used in the radial and axial directions respectively. We see that
the bifurcation is mildly supercritical, but quickly turns back and shows a marked
hysteretic character. The turning point at Weθ = 22.34 is much lower than the value
of 28.73 where the base solution loses stability. When we pick a point on this branch
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Figure 6. A path to non-trivial stationary solutions in circular Couette flow. The parameters are
Weθ = 25.15, L = 3.07, b = 1830, ε = 0.2, and S = 1.2.

and continue it down in δ we find, however, that it does not extend all the way to
δ = 0. For instance, picking Weθ = 23.35 on the upper branch in figure 5 and tracking
it in δ, we find that the branch turns back at δ = 0.69. We have tried this for other
points as well, but in all cases, they turn back well before reaching δ = 0. Therefore,
at least for this value of b and L, there is no direct path from non-trivial solutions in
Dean flow to those (if any) in circular Couette flow.

Given the apparent absence of a direct route from δ = 1 to δ = 0, we focused
on smaller values of δ and larger values of b and L. As b increases, the solutions
become more localized, and the global scheme we originally used is inefficient. Hence,
we switched to the spectral element/SUPG method described in § 3. At b = 1830,
δ = 0.576, and L = 2.71, a stationary bifurcation occurs at Weθ = 25.15. We tracked
the bifurcating branch at this value of Weθ up to L = 3.07 and then down in δ. This
path is shown in figure 6. The velocity norm used in this and all subsequent figures
is defined as

‖ vr ‖=
(∫

Γ

v2
r dΓ

)1/2

. (4.2)

As figure 6 shows, this branch exists all the way to δ = 0. This computation
demonstrates that an isolated branch of non-trivial solutions does indeed exist in the
circular Couette geometry.

4.3. Non-trivial stationary solutions in Couette–Dean flow – Diwhirls

Having computed a stationary solution at δ = 0, we can determine the effect of
changing various parameters. The first parameter we focus on is the wavelength. The
results of continuing our solution at Weθ = 25.15 in L are shown in figure 7. The
upper branch, being a stronger flow, is much harder to track than the lower branch,
and the end point of this branch represents the largest value of L at which we could
obtain converged solutions on the upper branch for this value of Weθ. The lower
branch presents fewer problems and we were able to track it with relative ease. The
key observation from figure 7 is that as L increases, both the lower and upper branches
become flat, suggesting that the spatial patterns are becoming independent of the size
of the computational domain, i.e. they are becoming localized. Examination of the
solution components confirmed that this was indeed the case, with the localization
occurring in the region near z = L/2. Since the components of the solution show
little or no axial variation far away from z = L/2, we can simply use their values at
the nodal points for a lower value of L as an initial guess for the solution at a larger
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Figure 7. Results from continuing the stationary circular Couette flow solutions in L. The parameters
are Weθ = 25.15, b = 1830, ε = 0.2, and S = 1.2. The gaps in the lower branch correspond to places
where we changed the mesh. Note the flatness of the branches as L increases. We have computed
extensions of the upper branch at lower values of Weθ .
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Figure 8. Density plot of αθθ (white is large stretch, black small) and contour plot of the stream-
function at L = 116.52 (Weθ = 24.29, b = 1830, S = 1.2, and ε = 0.2). For clarity, most of the
flow domain is not shown. Note the very strong localization of αθθ near the centre. The maximum
value of αθθ at the core is 1589 which gives τθθ = 12722. Compared to this, the maximum value of
αθθ in the circular Couette base state is 706, which gives τθθ = 1150. Away from the core of the
diwhirl, the structure is pure circular Couette flow. The streamlines show striking similarity to those
in figure 10 of Groisman & Steinberg (1998).

value of L, while increasing the axial extent of the domains bordering the edges (i.e.
z = L). This method of remeshing captures the localization effectively and avoids the
necessity of computing solutions at intermediate values of L. Using this technique,
we were able to get converged solutions on the lower branch for wavelengths that
are in excess of 100 times the width of the gap between the cylinders. We have also
used this technique to compute such long-wavelength solutions on the upper branch
at lower values of Weθ. We show the results of one such computation in figure 8. This
figure shows the streamfunction contours and a density plot of αθθ at L = 116.52 and
Weθ = 24.29 on the upper branch. For clarity, we only show the centre and edges
of the domain. The streamfunction contours are strongly localized near the centre of
the flow cell, which is a region of very strong inflow. Away from the core is a region
of weak outflow, and even further away, the solution is pure circular Couette flow.
The αθθ field shows an even stronger localization. It is the necessity of capturing this
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Figure 10. Plot of the location of the turning point, Weθ,c, versus L at S = 1.2 and ε = 0.2.
Note the flatness of the curve at large L.

strong localization that requires the use of a numerical method that permits efficient
local refinement. The streamlines at the core are remarkably similar to those in figure
10 on p. 2457 of Groisman & Steinberg (1998). Henceforth, we will call our solutions
diwhirls as well.

Figure 9 shows the results of continuation in Weθ for solutions at three different
values of L. All three curves show turning points in Weθ, i.e. there is a lower limit
in Weθ below which the diwhirls are not seen. Note that the curves at L = 9.11 and
4.74 are close together, and are both well separated from the curve at L = 3.07. This
further highlights the independence of the solutions of L for large enough L.

In figure 10, we show a plot of the location of the turning point in Weissenberg
number (Weθ,c) as a function of the wavelength. The most interesting feature in
figure 10 is the flatness of the curve at large L, indicating yet again that, for large
L, the characteristics of the solution are independent of the wavelength. Another
interesting feature in figure 10 is that the curve shows a minimum, i.e. the diwhirl
patterns exhibit wavelength selection. This minimum, which occurs at a Weissenberg
number of approximately 23.3, is therefore the lowest Weissenberg number at which
the FENE-P model with the chosen parameters predicts diwhirls to occur. More
important than the absolute value is the relative position of the turning point and
linear stability limits. The base-state circular Couette flow is unstable with respect
to axisymmetric disturbances above Weθ = 20.37 – all the solutions that we compute
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Figure 11. Plot of the position of the linear stability limit in circular Couette flow with respect to
axisymmetric disturbances and the turning point in Weθ for the diwhirls as a function of b. The
parameters are S = 1.2 and ε = 0.2. The computations for the diwhirls were performed at L = 4.74,
which is close to the minimum in figure 10.

lie above the linear stability limit of circular Couette flow. In contrast, Groisman &
Steinberg (1998) observe diwhirls at Weissenberg numbers as low as 10, well below
the linear stability limit of the base flow. One reason for this discrepancy could
be the approximate nature of the FENE-P model. Yet another could be that our
numerical simulations have not been able to access a sufficiently high value of b –
the GMRES iterations fail to converge at very large b. In figure 11, we plot the
position of the turning point in Weθ as a function of b for L = 4.74, which is close
to the minimum in figure 10. Also plotted in the figure is the minimum critical value
of Weθ at which the base-state circular Couette flow loses stability with respect to
axisymmetric perturbations. This figure shows that as b increases, the position of the
turning point shifts to lower Weissenberg numbers at a faster rate than the shift in
the minimum of the linear stability curve. This result is not unexpected, because the
polymer molecules are much more highly stretched in the core of the diwhirl than
in the base-state. Therefore, we would expect the nonlinearity of the FENE-P spring
law to have a greater effect on the diwhirls than on the base-state Couette flow. It
is conceivable, based on the results shown in figure 11, that the two curves would
cross at larger values of b (which we are not able to access due to limitations in the
numerical scheme) and that the diwhirls would come into existence below the linear
stability limit of the base flow. We point out here that Baumert & Muller (1999) and
Groisman & Steinberg (1997) performed their experiments with very high molecular
weight polymers, for which the values of b are likely to be much higher than we have
been able to access in our simulations.

We now present a rough quantitative comparison of our patterns with those from
the experimental observations of Groisman & Steinberg (1998). In figure 9 of their
paper Groisman & Steinberg present the radial velocity profile as a function of z
at a constant radial position near the middle of the gap, where vr has maximum
amplitude. To compare our results with this figure, we chose a point on the upper
branch of the curve for L = 4.74 with Weθ = 23.50 in figure 9 of this work. We then
converted our radial velocity into dimensional units by using values for the physical
parameters from Groisman & Steinberg (1998). Specifically, the values we used were
λ = 1 s and R2 = 41 mm. For ε = 0.2 used in our computations, this gives a gap width
of 8.2 mm, slightly higher than the 7 mm gap used in the experiments. In figure 12, we
present a profile of the radial velocity as a function of z for r = 0.6, where the radial
velocity is maximum. The peak inflow velocity we find is 5.9 mm s−1, which should
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Groisman & Steinberg (1998).
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Figure 13. Variation of solution amplitudes with ε. Here, Weθ = 25.15,
and the other parameters are as in figure 9.

be compared to the value of 3.8 mm s−1 that Groisman & Steinberg (1998) show in
their figure 9. The similarity between these two values is remarkable, more so when
we consider how simple the FENE-P model is, and that the Weissenberg number
used in figure 12 is roughly twice that at which Groisman & Steinberg (1998) report
their results, which means a larger radial velocity should be expected. Furthermore,
the wiggles at the shoulders of the peak are not numerical artifacts; similar features
are also seen in the experiments.

The dimensionless gap width or curvature ε plays a critical role in generating
elastic instabilities. Based on the generic mechanism of elastic instabilities, we expect
a decrease in curvature to have a stabilizing effect, i.e. keeping other parameters
fixed we would expect the diwhirl pattern to vanish at small enough values of ε.
In figure 13, we show the dependence of the diwhirl solution amplitudes on ε. In
agreement with expectations, we observe turning points as ε decreases. The role of
streamline curvature will become clear in § 4.4 where we propose a mechanism for the
diwhirls.

As mentioned in § 1, an important reason for attempting to numerically simulate
experimentally observed flow patterns is to determine whether a constitutive equation
can model complex flows of viscoelastic liquids. Both the FENE-P and the FENE-CR
equations are derived by applying closures to the evolution equation for α for a dilute
solution of non-interacting dumbbells connected by nonlinear springs. However, the
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Figure 14. Diwhirl solution amplitudes as a function of the parameter cr for two different wave-
lengths. Weθ = 25.15 and the other parameters are as in figure 9. The existence of turning points
demonstrates that these solutions cannot be extended to the FENE-CR model at the chosen value
of b.

‘exact’ FENE model is better approximated by the FENE-P model (Herrchen &
Öttinger 1997). We have already seen that the linear stability curves predicted by the
FENE-P and FENE-CR models show significant differences, and we have seen that
the FENE-P model equation has stationary solutions in circular Couette flow, which
indicates that it is able to capture, at least qualitatively, the mechanism behind the
diwhirls. A natural question to ask is whether the FENE-CR model can do so as well.
To this end, we perform a continuation of the diwhirl solutions in the parameter cr ,
starting from the FENE-P solutions (cr = 0). If the solutions persist at cr = 1, then
we will have obtained solitary solutions for the FENE-CR model in circular Couette
flow. Figure 14 shows the results of these computations. Both values of L that we
chose exhibit turning points at small values of cr , indicating that these solutions do
not exist for the FENE-CR model, at least for the parameter values that we have
chosen. As b→∞, however, the FENE-P and FENE-CR models both collapse to the
Oldroyd-B model, so we do expect that for sufficiently large b the FENE-CR model
will also exhibit diwhirls.

4.4. Self-sustaining mechanism

Since there is no stationary bifurcation in circular Couette flow, the diwhirl solutions
that we have computed are part of an isolated branch that does not connect directly
to the base state. Therefore, the sustaining mechanism for these patterns must be
inherently nonlinear. Groisman & Steinberg (1998) proposed one such mechanism,
arguing that the difference in symmetry between inflow and outflow results in the
elastic forces performing net positive work on the fluid. While this argument shows
that finite-amplitude stationary structures that exhibit significant asymmetry between
inflow and outflow are physically plausible, it does not explain the mechanism by
which such structures sustain themselves. Having the detailed velocity and stress fields
available to us from our computations, we propose a more complete mechanism.
Figure 15(a) shows a vector plot of v at the axial centreline of the vortex. The
figure shows that the azimuthal velocity is increased compared to the base state.
The principal components of the stress (figure 15b) show that there is an unstable
stratification of stress for r . 0.99, i.e. polymer molecules near the outer cylinder
are more highly stretched. The inward radial force exerted by the polymers due to
this stratification can be seen by examining the radial component of ∇ · τ , which we
observe to be strongly negative near the outer cylinder at the core of the diwhirl. This
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Figure 15. (a) Vector plot of v near the outer cylinder at the centre of the diwhirl structure
(oblique arrows) and the base state (straight arrows). The length of the arrows is proportional to
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symmetry at the centre of the diwhirl. (b) Principal stress directions at the same location as for (a).
The Couette flow stress is not shown because it is very small in comparison. This figure shows how
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Figure 16. Nonlinear self-sustaining mechanism for the diwhirl patterns.

allows us to propose the following fully nonlinear mechanism for the diwhirls (see
figure 16): a finite-amplitude perturbation near the outer cylinder results in a local
increase in the azimuthal velocity. This in turn creates an unstable stratification of
stress, as arises in the base state of Dean flow, which drives inward radial motion.
As the fluid moves downward, it is pulled azimuthally due to the shear generated
by the motion of the inner cylinder. The tension in streamlines then pulls the fluid
at larger radii (i.e. close to the outer cylinder) first axially into the diwhirl core,
then forward and down, maintaining the increase in the azimuthal velocity and the
large azimuthal normal stresses near the outer cylinder, and resulting in a self-
sustaining mechanism. The inward radial motion and azimuthal acceleration, as well
as the large degree of stretching that the polymer molecules undergo as they move
axially and radially inward, is shown quite dramatically in figure 17, where we have
plotted particle paths shaded according to polymer extension (tr(α)) near the core
of the diwhirl. This mechanism is analogous to that which drives the well-known
viscoelastic phenomenon of the tubeless siphon (Bird, Armstrong & Hassager 1987a),
where large tensile stresses sustain the flow by pulling fluid up from the reservoir
when the tip of the siphon tube is raised above the level of the fluid in the container.

4.5. Stability

We now address the question of the stability of the diwhirl patterns with respect to
axisymmetric and non-axisymmetric disturbances. We determine stability by finding
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Figure 17. Particle paths near the core of the diwhirl (z = 2.37), shaded by levels of tr(α). The paths
were generated by starting at r = 0.99, θ = 0, and different values of z and integrating to obtain
the position at later times. Note the strong extensional flow near the diwhirl core, which combines
with the radial inward motion to generate an effect like the tubeless siphon.

the eigenvalues ω in equation (3.15) or (3.18) for non-axisymmetric perturbations.
These computations are expensive, so we only perform them for a few points along
the upper branch for L = 4.74 in figure 9. Here, we report the results from one such
computation, performed at Weθ = 23.87. To resolve this point, we needed 16 radial
elements and 14 axial elements using fifth-order polynomials in both directions in
each element, which is a slightly coarser mesh than the one shown in figure 2, and
results in a system with over 53 000 unknowns. The computation requires the storage
of two sparse matrices, the preconditioner for one linear system, and the Krylov basis.
We used a 600 vector basis (arpack would not converge if significantly fewer vectors
were used) and asked for the most unstable eigenvalues.

For axisymmetric disturbances, we found two pairs of complex conjugate eigen-
values that had positive real parts. The eigenvectors corresponding to one pair had an
irregular grid-scale structure, suggesting that they are part of the continuous spectrum
of eigenvalues (Graham 1998; Wilson, Renardy & Renardy 1999; Renardy 2000).
These modes are expected to be stable, but since the eigenvectors are non-integrable
(Graham 1998), they will not converge exponentially in a spectral element scheme
and can display spurious instability. The structure of the other two eigenvectors is
shown in figure 18. It shows that although the branch is unstable, the destabilizing
disturbance has significant amplitude only near the ends of the domain, where the flow
is essentially circular Couette flow. The base circular Couette flow has a minimum
critical Weθ of 20.37 with respect to axisymmetric disturbances, and so is linearly
unstable at Weθ = 23.87. Hence, it is not surprising that the portion of flow pattern
where the flow is essentially circular Couette would be susceptible to destabilizing
disturbances. What is interesting, however, is that the core of the pattern, where the
diwhirl lies, is entirely unaffected. This shows that the diwhirl pattern is dynamically
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n = 1 n = 2

1 3.878× 10−2 ± 9.276× 10−3 i 3.674× 10−2 ± 1.742× 10−3 i
2 3.590× 10−2 ± 1.843× 10−2 i 2.968× 10−2 ± 8.189× 10−2 i
3 3.279× 10−2 ± 4.878× 10−2 i 2.788× 10−2 ± 5.722× 10−5 i

Table 1. Growth rates ω for the unstable non-axisymmetric modes at Weθ = 23.87, L = 4.74,
S = 1.2, and b = 1830.
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Figure 18. Density plot of vr showing (a) the real and (b) the imaginary parts of the destabilizing
disturbance, and (c) the streamlines of the base diwhirl. Note that the core of the diwhirl is entirely
unaffected by the disturbance. The parameters are Weθ = 23.87, S = 1.2, ε = 0.20, b = 1830, and
L = 4.74.

distinct from the oscillatory finite-wavelength axisymmetric pattern arising from the
linear instability of circular Couette flow.

For non-axisymmetric disturbances, the stability picture is somewhat more com-
plicated. We performed computations with n = 1 and n = 2 and found three pairs
of unstable complex conjugate eigenvalues. Their growth rates are summarized in
table 1, while their structures are shown in figures 19 and 20. For n = 1, we see that
there are two modes that have their largest amplitude close to the core of the diwhirl
(figures 19a and 19b), while the third (figure 19c) has a large amplitude away from
the core. The third mode is directly related to the linear instability of circular Couette
flow with respect to non-axisymmetric disturbances with n = 1. For n = 2, the picture
is slightly different. There is still one mode (figure 19a) that is largely concentrated
outside the core, and which therefore seems related to the linear instability of circular
Couette flow. The mode in figure 19(b) is largely concentrated at the core, and shows
similarities to figures 19(a) and 19(b). In addition, there is a non-localized mode (fig-
ure 20c) that is absent for n = 1. As discussed in § 4.3, we expect that with increasing
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Figure 19. Density plot of the perturbation radial velocity for the three non-axisymmetric
unstable eigenmodes with n = 1. The parameters are identical to those in figure 18.
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Figure 20. Density plot of the perturbation radial velocity for the three non-axisymmetric
unstable eigenmodes with n = 2. The parameters are identical to those in figure 18.

b, the diwhirls would come into existence below the linear stability limit of circular
Couette flow. In these regimes, they would be stable, at least with respect to the ‘far
field’ linear instabilities that do not affect the core of the diwhirl.

4.6. Dean flow revisited

In the previous sections, we have demonstrated that stationary, localized solutions of
arbitrarily large wavelength exist in circular Couette flow. Here, we return to Dean
flow to investigate whether such solitary solutions are possible there. We do this by
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Figure 21. Bifurcation diagram for Dean flow at b = 1830, S = 1.2, ε = 0.2, and L = 1.963. We
could not continue the branch beyond Weθ = 13.94, for reasons discussed in section 4.6. Radial
velocity profiles corresponding to the points marked by the open square and filled and open circles
are shown in figure 22.

tracking long-wavelength steady states that bifurcate from the base state in Dean
flow. To make comparison with the circular Couette flow results easier, we choose
b = 1830, S = 1.2, and ε = 0.2, which are the same parameter values that we used for
circular Couette flow. In figure 21, we show the bifurcation diagram for L = 1.963.
This is similar to figure 5, in that there is a large subcritical region, and the non-trivial
branch exhibits a turning point, i.e. there is a critical value of the Weissenberg number
below which the non-trivial solution does not exist. In figure 22, we show density
plots of αθθ at Weθ = 18.525 (marked by an open square in figure 21), Weθ = 15.486
(marked by an open circle in figure 21) and at Weθ = 13.930 (marked by a filled circle
in figure 21). The figure shows that rather than becoming localized, as would have
been the case with the diwhirls in circular Couette flow, long-wavelength nonlinear
patterns in Dean flow have a tendency to split into two vortices, each one having half
the wavelength of the original vortex. In fact, for the particular case of L = 1.963,
we were not able to advance the continuation beyond Weθ = 13.94 on the upper
branch. Examination of figure 22(c) reveals why: it is clear from the symmetry of the
solution that the L = 1.963 path crosses a branch of solutions with L = 1.963/2 in
a pitchfork bifurcation. This intersection is the reason the continuation fails beyond
this point. We wish to stress here that the absence of localization in Dean flow is
not limited to the particular case of L = 1.963: we have seen this for larger values
of L as well. One possible reason for this could be that localized structures would
have areas in the far field that would be very similar to base-state Dean flow, much
like the case with solitary steady states in circular Couette flow where the far field is
essentially base-state circular Couette flow (see figure 8). However, since Dean flow
is linearly unstable to stationary disturbances of smaller wavelengths, there would be
a tendency for stationary vortex structures of smaller wavelengths to form in the far
field and prevent true localization.

As with circular Couette flow in figure 10, we can plot an existence boundary
for the non-trivial Dean flow solutions. This curve is shown in figure 23. Note that
there is a discontinuity at L = 1.795. At this wavelength, we get a collision with
the L = 1.795/2 branch in a pitchfork bifurcation as was the case with L = 1.963,
but this time, the collision occurs before the turning point is reached. Therefore, no
turning point exists for this value of L, resulting in the discontinuity. For reference, we
also show two linear stability curves of Dean flow. The curve on the left (the dashed
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Figure 22. Density plots of αθθ at the points marked in figure 21. (a) Weθ = 18.525,
(b) Weθ = 15.486, (c) Weθ = 13.930.

line) is the usual linear stability curve of Weθ,c versus L. The curve on the right (the
dotted line) is the linear stability curve with respect to disturbances which have two
vortices, each of wavelength L/2. This curve is trivially obtained from the regular
linear stability diagram by multiplying the horizontal coordinate by a factor of two.
At the intersection of the two curves, denoted by Lt, is a codimension-2 point, where
disturbances of wavelength Lt and Lt/2 bifurcate simultaneously. We would expect
interactions between modes to play a significant role in the nonlinear behaviour close
to this wavelength. Note that the discontinuity in the nonlinear existence curve occurs
close to L = Lt. In short, while localized states are supported in viscoelastic circular
Couette flow, in Dean flow they are not.
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Figure 23. Linear stability curves and existence boundaries for nonlinear solutions in Dean flow
at S = 1.2, ε = 0.2, and b = 1830. The filled triangle shows the result at L = 1.795, where the
solution terminates via collision with the L/2 branch in a pitchfork bifurcation, without having
gone through a turning point.

5. Conclusions
In this work, we have computed stationary, non-trivial solutions in viscoelastic

circular Couette and Couette–Dean flows. These stationary solutions, computed with
the FENE-P constitutive model, show very strong spatial localization, exist only for
large values of the polymer extensibility parameter and large wavelengths, show a
hysteretic character in the Weissenberg number, and are isolated from the base Couette
flow branch of solutions, all of which are characteristics shared by similar patterns
(‘diwhirls’ or ‘flame patterns’) observed experimentally (Groisman & Steinberg 1997,
1998; Baumert & Muller 1999). Direct comparison shows that the streamlines and
magnitudes of the radial velocity for the patterns we have computed are very similar
to the corresponding experimentally measured quantities. The one major difference
between the experimenatally observed patterns and our solutions is the position of
the turning point bifurcation at which the diwhirls come into existence. While the
experimentally observed diwhirls exist at Weissenberg numbers well below the linear
stability limit of circular Couette flow, the computed diwhirls come into existence at
Weissenberg numbers slightly higher than the linear stability limit of the base state.
A likely reason for this discrepancy is our present inability to computationally access
large enough values of b.

We have also performed computations with the FENE-CR model, finding that
it produces significantly different results in both the linear and nonlinear regimes.
In particular, the diwhirls are not predicted with the FENE-CR model for the
parameter values that we have examined. However, since both the FENE-P and
FENE-CR models collapse to the Oldroyd-B model as b → ∞, we would expect the
FENE-CR model to exhibit diwhirls at sufficiently large values of b.

We have used the velocity and stress fields generated from our computations to
propose a self-sustaining mechanism for the diwhirls. The mechanism arises from a
finite-amplitude perturbation giving rise to a local increase in the azimuthal velocity
near the outer cylinder near the symmetry axis of the vortices. This gives rise to
an unstable stratification of stress, which drives inward radial motion. As the fluid
moves inward, it is accelerated azimuthally by the base-state shear generated by the
motion of the inner cylinder. The tension in the streamlines then pulls fluid close to
the outer cylinder axially into the diwhirl core, then forward and down, regenerating
the unstable stress stratification and resulting in a self-sustaining mechanism.

Linear stability analysis shows that the computed diwhirls are unstable with respect
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to axisymmetric and non-axisymmetric perturbations. For axisymmetric disturbances,
the destabilizing disturbance has appreciable amplitude only in the region away from
the diwhirl core, and is therefore linked to the linear instability of the base state in
the Weissenberg number regimes in which the diwhirls we have computed exist. The
picture is more complicated for non-axisymmetric disturbances, with some unstable
eigenvectors only having appreciable amplitude away from the core and others being
concentrated at the core of the diwhirl.

Finally, we have investigated whether structures similar to diwhirls or flame patterns
could form in Dean flow by tracking steady states bifurcating from the base flow in
Weissenberg number. Our computations demonstrate that long-wavelength solutions
in Dean flow tend to evolve into shorter-wavelength structures rather than becoming
localized.

Along with the solutions arising from the linear instability of the circular Couette
flow base state, we propose that the solitary solutions we have computed form building
blocks for spatiotemporal dynamics in the flow of viscoelastic liquids. We believe that
the computations presented here are a step towards understanding these complex
nonlinear dynamics.

We gratefully acknowledge financial support for this work from NSF, the ACS/PRF
and 3M Company. The bulk of the computations presented here were performed on
one or more four processor SGI Origin 200 machines, and we thank the Chemical
Engineering Department at the University of Wisconsin-Madison for providing us with
access to these machines. We would also like to thank Professor Bamin Khomami,
Professor R. Sureshkumar and their research associates for helpful discussions.

REFERENCES

Al-Mubayedh, U. A., Sureshkumar, R. & Khomami, B. 1999 Influence of energetics on the
stability of viscoelastic Taylor-Couette flow. Phys. Fluids 11, 3217–3226.

Baumert, B. M. & Muller, S. J. 1995 Flow visualization of the elastic Taylor-Couette instability
in Boger fluids. Rheol. Acta 34, 147–159.

Baumert, B. M. & Muller, S. J. 1997 Flow regimes in model viscoelastic fluids in a circular
Couette system with independently rotating cylinders. Phys. Fluids 9, 566–586.

Baumert, B. M. & Muller, S. J. 1999 Axisymmetric and non-axisymmetric elastic and inertio-elastic
instabilities in Taylor-Couette flow. J. Non-Newtonian Fluid Mech. 83, 33–69.

Beavers, G. S. & Joseph, D. D. 1974 Tall Taylor cells in polyacrylamide solutions. Phys. Fluids 17,
650–651.

Bird, R. B., Armstrong, R. C. & Hassager, O. 1987a Dynamics of Polymeric Liquids, 2nd edn.,
vol. 1. Wiley.

Bird, R. B., Curtiss, C. F., Armstrong, R. C. & Hassager, O. 1987b Dynamics of Polymeric
Liquids, 2nd edn., vol. 2. Wiley.

Brooks, A. N. & Hughes, T. J. R. 1982 Streamline upwind/Petrov-Galerkin formulations for
convection dominated flows with particular emphasis on the incompressible Navier-Stokes
equations. Comp. Methods Appl. Mech. Engng 32, 199–259.

Cherhabili, A. & Ehrenstein, U. 1995 Spatially localized two-dimensional finite amplitude states
in plane Couette flow. Eur. J. Mech. B/Fluids 14, 677–696.

Cherhabili, A. & Ehrenstein, U. 1997 Finite-amplitude equilibrium states in plane Couette flow.
J. Fluid Mech. 342, 159–177.

Chilcott, M. D. & Rallison, J. M. 1988 Creeping flow of dilute polymer solutions past cylinders
and spheres. J. Non-Newtonian Fluid Mech. 29, 381–432.

Christodoulou, K. N. & Scriven, L. E. 1988 Finding leading modes of a viscous free surface flow:
An asymmetric generalized eigenproblem. J. Sci. Comput. 3, 355–406.



Finite-amplitude solitary states in viscoelastic shear flow 327

Cross, M. C. & Hohenberg, P. 1993 Pattern-formation outside of equilibrium. Rev. Mod. Phys. 65,
851–1112.

Fineberg, J. & Lioubashevski, O. 1998 Propagating solitary states in highly dissipative driven
fluids. Physica A 249, 10–17.

Graham, M. D. 1998 Effect of axial flow on viscoelastic Taylor-Couette instability. J. Fluid Mech.
360, 341–374.

Grillet, A. M., Lee, A. G. & Shaqfeh, E. S. G. 1999 Observations of ribbing instabilities in elastic
fluid flows with gravity stabilization. J. Fluid Mech. 399, 49–83.

Groisman, A. & Steinberg, V. 1997 Solitary vortex pairs in viscoelastic Couette flow. Phys. Rev.
Lett. 78, 1460–1463.

Groisman, A. & Steinberg, V. 1998 Mechanism of elastic instability in Couette flow of polymer
solutions: Experiment. Phys. Fluids 10, 2451–2463.

Groisman, A. & Steinberg, V. 2000 Elastic turbulence in a polymer solution flow. Nature 405,
53–55.

Heinrichs, R., Ahlers, G. & Cannell, D. S. 1987 Traveling waves and spatial variation in the
convection of a binary mixture. Phys. Rev. A 35, 2761–2764.
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